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Contact/impact in ¯exible multibody systems that undergo pre-contact free
motion, contact/impact and post-impact constraint motion is modelled. The
shortcomings of using coe�cients of restitution, penalty parameters and
Lagrange multipliers are overcome by using a methodology for modelling non-
holonomic hybrid parameter multiple body systems (HPMBS). The minimum
set of equations required for the systems were developed using the
methodology. All the dynamics of the manipulator (elaborated in the section
below) are modelled with very few degrees of freedom. The model was
experimentally validated via a planar two-link ¯exible manipulator that
undergoes the complete motion regime. The comparisons show that the model
predicts the complete dynamics of the manipulator accurately and the
transition between the di�erent modes of motion is seamless.

# 1999 Academic Press

1. INTRODUCTION

Contact/impact in multibody and ¯exible multibody systems is of prime interest
and is under current study by many researchers. The most common techniques
used to model such systems are the Newtonian, Lagrangian and Hamiltonian
methods. In the case of non-holonomic multi-body systems, the Lagrangian
formulation requires the use of Lagrange multipliers which introduce additional
algebraic equations. These additional equations tend to make the system of
equations numerically more dif®cult to solve. Also, the formulation does not
provide the minimum set of equations for the system. The Newtonian method has
the advantage of vectorial formulation but gets extremely tedious in the case of
multibody systems. The large amount of work that has to be expended in
developing the equations of motion for ¯exible multibody systems using the above
methods has been documented by Barhorst [1]. To overcome the dif®culties
mentioned above, a methodology based on the Kane's form of the Gibbs±Appel
equations that is direct and easily applicable was presented by Barhorst [1, 2].
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The impact process, in most cases, is modelled using a coef®cient of restitution
derived using kinematic, kinetic or energy based formulations [3]. As
documented by Brach, there are some inconsistencies when using such
coef®cients of restitution, especially in the case of eccentric collisions where, in
some instances an increase in energy has been observed. Stronge [4] has shown
that an improper treatment of the kinematic coef®cient of restitution can lead to
such energy gains. Stoianovici and Hurmuzulu [5] show the effect of incident
angle on the coef®cient of restitution and also show that using a constant
restitution coef®cient leads to incorrect results in the case of oblique impacts.
They derive a slenderness ratio, and through experiments show that only for
rods with relatively low slenderness ratio, the coef®cient of restitution remains
almost invariant throughout the range of incident angles. In the case where
penalty methods are used to satisfy the contact constraint, the problem of
interpenetration cannot be avoided. If the contact constraint violation is to be
avoided, then a large penalty parameter has to be used which leads to numerical
instabilities [6, 7]. When Lagrange multipliers are used to enforce the surface
contact displacement constraint, the problems discussed above w.r.t. Lagrange
multipliers have to be dealt with.
A methodology for modelling hybrid-parameter multiple body systems

(HPMBS) was presented by Barhorst [1, 2, 8, 9] to overcome the above
mentioned inadequacies. The process of contact/impact is modelled through an
instantaneously applied non-holonomic constraint where the need for the use of
a coef®cient of restitution, a penalty parameter or a Lagrange multiplier is
eliminated. The contact constraint is also completely satis®ed. In the work
presented, the authors implicitly neglect the elastic deformation of the rigid
bodies in the region of impact as it is assumed that most of the energy on impact
goes into deforming the elastic bodies. Although the macroscopic motion of the
system of bodies was modelled, the elastic effects are predicted with a great
degree of accuracy.
This paper is devoted to experimentally verifying the methodology presented

by Barhorst [1, 2] and uses the algorithm presented in reference [9]. The model, a
two-link ¯exible manipulator, to be veri®ed will encompass the complete motion
regime, namely pre-contact free motion, contact/impact and post-impact
constraint motion. It will also include friction on impact, in constrained motion,
effect of all interconnecting rigid bodies, i.e., rigid bodies that connect the elastic
bodies to the drive mechanism, etc., dynamics of driving motors and gearboxes
and the effect of backlash of gearboxes. As mentioned earlier no coef®cient of
restitution is used.
The mathematical model is presented in the next section. Discussed in section

3.2 are the experimental set-up and the comparison of experimental and
simulation results. The ®nal section is the summary of the results.

2. MATHEMATICAL MODEL

A comprehensive model will be developed for a two-link ¯exible manipulator
that undergoes the complete motion regime and will also include all the
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dynamics mentioned above. The schematic of the manipulator in constraint free
(free ¯ight) motion is shown in Figure 1, where q1(t) and q4(t) are the generalized
co-ordinates of the system and the pseudo-co-ordinates [8, 10, 11] q2(t) and q5(t)
and q3(t) and q6(t) are the tip de¯ections and tip rotations respectively of the two
beams. The system considered has four rigid bodies (RB) and two elastic bodies
(EB) as shown in Figure 1. The ordinary differential equations governing the
two generalized speeds are given by [2, 8±10]
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Figure 1. Two-link ¯exible manipulator in free ¯ight; 1=m±g A, 2=1st RB, 3=1st EB,
4=2nd RB, 5=m±g B, 6=3rd RB, 7=2nd EB, 8=4th RB.
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where the subscript r implies the rigid bodies and the subscript e the elastic

bodies in the chain of bodies and i=1, 4. The F 's and T 's are the active forces

and torques acting on the bodies and the inertia forces (~Ir) and torques (~Jr)

[1, 10] acting on each rigid body of the manipulator are given by
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rN~a

�r , �2�

~Jr � bor~r �r6mo
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where r denotes the rth rigid body, and for the elastic bodies by
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where the equations are written considering a differential slice with inertia per

unit domain �~~Iioe�. The displacement of these beams with respect to their local

co-ordinate frame is assumed to conform to ®eld displacements ~u12�x11, t� for the
®rst beam and ~u22�x31, t� for the second beam, where

~u12�x11, t� � fq2
�x11�q2�t� � fq3

�x11�q3�t�, �6�
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The shape functions (fq i
) are de®ned such that they satisfy the geometric

boundary conditions and are given by
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where the xi1's are as de®ned in Figure 2. The equations governing the above

®eld displacements are [2, 8±10]
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for the second beam. The strain energy density function �V is de®ned as

�Vi � 1

2
EiIi

@2~ui2�xi1, t�
@x2i1

� �2

, �11�

where i=1 and 2 for the ®rst and second beam, respectively. Ei and Ii are the
modulus of elasticity and the area moment of inertia of the respective beams.
The boundary conditions for the respective beams are given by equation (1)
when the partial velocities are taken w.r.t. s2(t), s3(t), s5(t) and s6(t) [2, 9]. The
weak form (in the sense of Ritz [12]) of equations (9) and (10) yield equations for
s2(t), s3(t), s5(t) and s6(t). The shape functions are used as test functions to
generate the weak forms of the ®eld equations. The two ordinary differential
equations governing speeds s1(t) and s4(t) and the four equations that arise from
the ®eld equations along with the six kinematic differential equations comprise
the 12 ®rst order differential equations that have to be solved in time to predict
the motion of the manipulator in free space. The formulation is expedited via the
symbolic tools described by Barhorst [2].
In the case of constrained motion, the typical con®guration of the manipulator

is as shown in Figure 3. Due to the constraint, the manipulator looses a degree
of freedom and hence, q4(t) is taken to be the dependent co-ordinate. Also, a
®ctitious co-ordinate q7(t) is de®ned which will be used in determining the
switching conditions for the motion regimes. With reference to Figure 3, the
vector loop equation is written as
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Figure 2. Co-ordinates describing shape of beam.



714 S. HARIHARESAN AND A. A. BARHORST

VLE � o
N~r

�6 � toolxb̂41 � toolyb̂42 ÿ q7�t�n̂1 ÿ q8�t�n̂2 � hn̂1 � 0, �12�
where toolx and tooly are the distances in the b̂41 and b̂42 directions respectively
to the tip of the tool from the center of gravity of the tip mass. The VLE will be
used to solve for q4(t), the dependent co-ordinate, in terms of the other co-
ordinates. To do that, the dot product of equation (12) is taken with vectors n̂1
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Figure 3. Two-link ¯exible manipulator in constrained mode.
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and n̂2 of N to get

C1 � VLE � n̂1 � 0, C2 � VLE � n̂2 � 0: �13, 14�
The above equations are transcendental and are solved using the Newton±
Raphson method. Differentiating equations (13) and (14) w.r.t. time in N gives

_C1 �
Nd
dt
�VLE � n̂1� � 0, _C2 �

Nd
dt
�VLE � n̂2� � 0, �15, 16�

and rearranging the terms results in expressions for the dependent velocities s4(t)
and s8(t) in terms of the other generalized co-ordinates and speeds as shown
below:

s4�t�
s8�t�
� �
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C2s4
C2s8

� �ÿ1 rhss4
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� �
�17�

� �I�ÿ1 rhss4
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� �
, �18�

where C1s4
and C1s8

are the coef®cients of s4(t) and s8(t) respectively in equation
(15) and C2s4

and C2s8
are the coef®cients of s4(t) and s8(t) respectively in

equation (16). Likewise, rhss4 comprises terms in equation (15) not associated
with s4(t) and s8(t), and rhss8 comprises terms in equation (16) not associated
with s4(t) and s8(t). Similarly, the constrained accelerations _s4�t� and _s8�t� are
given by

_s4�t�
_s8�t�

� �
� �I�ÿ1 rhs_s4

rhs_s8

� �
, �19�

where rhs_s4 consists of terms in (d2/d2t) C1=0 not associated with _s4�t� and
_s8�t�, and rhs_s8 consists of terms in (d2/d2t) C2=0 not associated with _s4�t� and
_s8�t�.

2.1. FORCE OF CONSTRAINT

When the manipulator's tool comes in contact with the constraint surface, the
®ctitious co-ordinate q7(t) comes into play. The force, ~Fc, that is required to
bring the manipulator into conformance with the constraint [9, 11], i.e., for q7(t)
to be zero, is given by equation (1) as
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i.e., the partial velocities are taken w.r.t. the ®ctitious speed s7(t).
Then the manipulator undergoes constrained motion, an opposing force in the

form of friction acts on the tool. Hence, the expression for the friction force
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acting on that rigid body (namely, the sixth body) is given by

�~Ff�6 � ÿm�vsign�j~Fcjn̂2, �21�
where m is the kinetic coef®cient of friction and vsign is the sign of the velocity
vector of the tip of the tool in constrained motion.
Equation (1) provides the ordinary differential equation of motion in the

constrained mode that governs q1(t) when the quantities{ s4(t) and _s4�t� are
substituted for from equations (18) and (19), respectively. The partial differential
equations (9) and (10) and boundary conditions are valid in the case of
constrained motion also when the constrained quantities are rewritten in terms
of the independent co-ordinates, velocities and accelerations. Note that in the
constrained mode, q4(t) and q8(t) are solved using the Newton±Raphson method
through transcendental equations (13) and (14) at each time step of the
numerical integration process.

2.2. MOMENTUM EQUATIONS ON CONTACT/IMPACT

At the instant the manipulator's tool comes into contact with the constraint
surface, a non-holonomic constraint is instantly enforced. This fact is used to
derive the post-impact initial conditions for constrained motion. The following
equations result in the generalized algebraic momentum equations which, when
solved simultaneously, yield post-impact velocities. The algebraic momentum
equations for the two-link ¯exible manipulator are [8, 9]X
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for ~u22�x31, t�. Equations (23) and (24) are valid pointwise in space.
It should be noted that pre-contact positions are used in calculating the partial

velocities in the impact-momentum equations but the post-impact velocity (at
time t�o ) is written to conform to the constrained con®guration. The reason being

{These quantities will also be referred to as constrained quantities.
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that over the time of impact, the position of the manipulator is considered to
remain stationary.

3. NUMERICAL SIMULATION AND EXPERIMENTAL VERIFICATION

The equations of free ¯ight and constrained motion are rearranged to be of
the form

�Iij�f_sjg � frhsig, �25�
where i � j � 1, 2, . . . , 12 for free ¯ight and i � j � 1, 2, . . . , 10 for constrained
motion, and the momentum equations in matrix form look like

�momij�fsjg � frhsmomi
g, �26�

where i � j � 1, 2, . . . , 5.

3.1. TORQUE EQUATION

The equation for the torque output of each gearbox was obtained from
references [13, 14] as

Ti � ÿJeqi _s�t� ÿ Ceqis�t� �
niKtieai
Ri

ÿ n2i KtiKbi

Ri
eais�t�, �27�

where Jeq is the equivalent inertia of the motor and gearbox, Ceq is the
equivalent damping of the motor and gearbox, Kt is the motor constant, Kb is
the back-emf constant, ea is the applied voltage, n is the gear ratio, and i=1 for
the ®rst gearbox and i=2 for the second gearbox. The backlash of the
gearboxes was modelled as a deadband.

3.2. EXPERIMENTAL SET-UP

The physical model of the testbed has two permanent magnet DC motors and
each drives a planetary gear box. As seen in Figure 4, the ®rst motor±gearbox
combination (mÿg A) drives an aluminum beam through a rigid hub (RB3

1),{ as
shown in Figure 4. At the end of this beam is a another rigid mass (RB2) onto
which the second motor-gearbox combination (mÿg B) is mounted. A second
aluminum beam, has on one end a rigid hub (RB3) driven by mÿg B and on the
other end a tool (RB4) which impacts with a rigid surface and then moves along
the impact surface in the case of constrained motion. The second motor±gearbox
combination and the tool are mounted on air bearings which ¯oat on an
aluminum table 2�5 m long and 1�5 m wide. The angular position of each arm
is tracked using digital encoders mounted on the end of the motors.
Accelerometers measure the acceleration at various points along the beams, as
shown in Figure 4. Two different sets of accelerometers were used. The ®rst set
was attached to the mid-point of the beams and had a sensitivity of 100 mV/g
and the second set, mounted on the second and fourth rigid bodies, had a

{RB implies rigid body.
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sensitivity of 5 mV/g. The motors are powered using a constant voltage DC
power supply.
The encoder and accelerometer values were recorded using a Wavebook 512{

data acquisition board. This board was connected to a high speed computer
which collected the data as each test run was executed. A schematic of the test
set-up is shown in Figure 5.

3.3. COMPARISON OF SIMULATION AND EXPERIMENTAL RESULTS

The quantities compared were the angles of the beams (q1(t) and q4(t)) and the
transverse accelerations (in the b̂i2 directions) at the mid-point of the two beams
and at points on the second and fourth rigid bodies (shown in Figure 4).

Base motor and gearbox Middle motor and gearbox

Beams

Air bearings

Accelerometers

RB2

RB3
RB4

(a)

(b)

RB1

Figure 4. Experimental set-up: (a) accelerometers, (b) beams and air bearings.

{The data acquisition board was made by IOTECH and can record data at a maximum scan
rate of 1 MHz.
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Figure 5. Schematic of data acquisition set-up: arrows indicate direction of data ¯ow.
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3.3.1. Case 1

In this case, angle q1(t) was set to 55� and angle q4(t) to 0�. The base and
middle motors were supplied a voltage of 1�5 V and the motion was observed.
Figures 7 through 10 show that the calculated accelerations (at the points on the
beam mentioned above) match with those measured from the experimental set-
up. The results of the simulation and experiment of the two angles mentioned
above agree well with each other and are presented in Figure 6.
Two different sets of accelerometers were used to measure accelerations at the

beams and rigid bodies. Those mounted on the beams gave relatively better
results, i.e., with lesser noise, than those mounted onto the rigid bodies.
In Figure 7, the acceleration at the middle of the ®rst beam is presented from

both the experiment and simulation. The two plots in the ®gure show the basic
overall trend. The frequency of the waveform from the experiment and
simulation results were 10�96 and 11�53 Hz, respectively. The pre-impact region
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Figure 7. Case 1, plots of acceleration of mid-point of ®rst beam: (a) experiment, (b) simu-
lation.
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of both plots show an acceleration of almost zero which is expected as the
motion is a constant velocity motion due to a constant voltage applied to the
motors. Figure 8 presents the acceleration at the second rigid body. In this case
too the frequency of the waveforms match closely. Both plots in Figure 8 show
an identical pattern of the overall low frequency waveform. The reason for the
higher amplitude of the low frequency waveform in the experimental results was
due to a excessive noise in the collected accelerometer data.
The plots in Figure 9 show very good agreement of the results from the

simulation and experiment. The frequency of the experimental and simulation
waveforms and amplitudes match extremely well. Figure 10 shows the results of
the fourth accelerometer on the fourth rigid body. As in the case of the second
accelerometer, the free ¯ight portion of the curve shows the result of noisy data.
But the frequency of both the experimental and simulation data match. The
main reason for the difference in the frequency of the simulation and experiment
was the mismatch of the inertia properties of the rigid bodies (since standard
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Figure 8. Case 1, plots of acceleration of second rigid body: (a) experiment, (b) simulation.
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values of density were used in calculating the mass of each rigid body) and

the gearboxes. The time at which impact occurs in the experiment and the

simulation differs by 0�07 s. This delay is attributed to the friction between the

air bearing and the table, the mismatch of the damping coef®cient of the

gearboxes and the inertia of the various rigid bodies and gearboxes. The air

bearing and the table do not come in contact except at a few high spots on the

table. This random friction between the table and the air bearing was not

modelled. The damping in the beams was assumed to be proportional to the

velocity of their transverse displacement. The effect of this can be seen in the

plots as a reasonably smooth exponential decay of the amplitude of accelerations

to that of the experimental data. A look at the acceleration data also shows that

the damping trends of the simulation results are identical to those of the

experiment. Also, the trends at the instant of impact of both the experimental
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Figure 9. Case 1, plots of acceleration of mid-point of second beam: (a) experiment, (b) simu-
lation.
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and simulation data are the same, i.e., the acceleration jumps either positive or
negative.
A Fast Fourier Transform (FFT) was performed on the raw experimental and

simulation data to determine the major frequencies (Figure 13). The difference in
these values of frequency mentioned above is mainly due to mismatch of actual
and calculated inertia properties of the rigid bodies.
Shown in Figures 11 and 12 are comparisons of snapshots of the actual

motion of the two link ¯exible manipulator captured using a video camera and
the animation where the bouncing of the tip from the surface can be clearly seen.
The experiment and simulation were performed with the same set of initial
conditions and a good agreement between the two can be observed.

3.3.2. Case 2

In this case, angle q1(t) was set to 87� and angle q4(t) to 0�. The base motor
was not supplied any voltage and the middle motor was supplied a voltage of
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Figure 10. Case 1, plots of acceleration of fourth rigid body: (a) experiment, (b) simulation.
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(a)

(b)

(c)

Figure 11. Case 1, comparison of movie and animation: (a) t=2�12, (b) t=2�34, (c)
t=2�72.
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(a)

(b)

(c)

Figure 12. Case 1, comparison of movie and animation: (a) t=2�81, (b) t=2�97, (c)
t=3�44.
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1�5 V and the motion along the constraint surface was observed. The plots of
angles q1(t) and q4(t) for the simulation and experiment are shown in Figure 14
and those for acceleration in Figures 15 and 16.
The simulation and experimental results for angle q1(t) in Figure 14 do not

match as closely as they do for angle q4(t). The reason for this is that in this
con®guration, due to the uneven distribution of the load over the middle air
bearing, it tips over and binds with the table.
As in Case 1, the major trends, the overall waveform and overall frequency in

the experimental and simulation results match closely. The difference in time of
impact and frequencies in the experiment and simulation are once again
attributed to the reasons discussed in Case 1.

3.3.3. Case 3

In order to demonstrate the model's applicability to control and to illustrate
the model's ability to go through the complete motion regime seamlessly, a
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Figure 13. Case 1, comparison of FFT of experimental and simulation acceleration data at
mid-point of ®rst beam: (a) experimental, f=10�96; (b) simulation, f=11�59.
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Figure 14. Case 2, plots of angles q1 (6, experiment; ÿ, simulation) and q4 (+, experiment;
-- -, simulation).
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sanding like operation was simulated where the tip of the manipulator is forced
to move along the constraint surface by varying the commanded position of the
tip in time. A simple proportional control law was proposed to implement the
sanding operation where the tip of the manipulator was commanded to move
along the constraint surface in a cyclic fashion. We did not model the possibility
of the tool sticking to the workpiece. However, this stiction effect can easily be
modelled using the techniques herein, and will be included in models for further
studies. Even without stiction explicitly modelled, we do get interesting dynamics
induced by friction.
It is interesting to note from Figures 17 and 18 that the manipulator realizes

the full motion regime. Figure 17 shows the position of the tip of the
manipulator in the n̂1 or x-direction, and Figure 18 the plot of x versus y
position of the tip of the manipulator.
The constraint surface is 25 mm in the negative n̂1 direction. The above plots

show the time and position at which the tip leaves the surface. An effect of
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Figure 15. Case 2, plots of acceleration of mid-point of ®rst beam: (a) experiment, (b) simu-
lation.
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impact with friction that the model was able to predict was direction reversal.
This effect is well noticed in the animation but can also be noticed in the plot of
the tip position in the x direction at time t=2�25 s.

4. SUMMARY

In this paper, a model based on the methodology presented by Barhorst that
undergoes the complete motion and incorporates all the dynamics listed in the
introduction was developed and completely veri®ed. The veri®cation was done
via an experimental set-up of a planar two-link ¯exible manipulator described in
section 3.2. The plots of the angles of the two beams, accelerations of the rigid
bodies and mid-points of the two beams and comparison of the animation of the
two-link ¯exible manipulator and the video of the motion of the test set-up were
presented to validate the veri®cation of the model and the methodology.
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Figure 16. Case 2, plots of acceleration of mid-point of second beam: (a) experiment, (b) simu-
lation.
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Moreover, the model included realistic effects like motor dynamics, gearbox
dynamics, backlash from the gearboxes, friction on impact and in constrained
motion and the effect of all interconnecting rigid bodies. Also, the resulting set
of equations was the minimal set and the impact process was modelled without
the use of a coef®cient of restitution and the contact constraints were completely
satis®ed.
Comparisons of the simulation with the motion of the actual system were

provided to show that the model predicted the impact process accurately. With
only six degrees of freedom, the model manifested the complete dynamics of the
manipulator. The adaptability of the model for control applications was
demonstrated through Case 3.
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Figure 17. Demonstration of control: (a) plot of angles (---, q1; Ð, q2) and (b) x-position of tip
of ¯exible manipulator (sanding operation).
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APPENDIX: NOMENCLATURE

A~oB angular velocity of frame B in frame A (the uppercase
superscript denotes a frame of reference)

A~aB angular acceleration of frame B in frame A
a~r b position vector from point a (tail) to point b (head) (the

lowercase superscript denotes a point)
ioe~r �Ie position of c.g. of differential slice of elastic body in its local

co-ordinate system
Ad=dt differentiation w.r.t. reference frame A
�Ad=dt�a~r b � o

A~v
b velocity of point b relative to point a as seen in reference

frame A
�Ad=dt�a~v b � o

A~a
b acceleration of point b relative to point a as seen in reference

frame A
o
N~a

ioe absolute acceleration of origin of co-ordinate system
associated with elastic body e

o
N~a

�Ie absolute acceleration of differential slice of elastic body e
�V strain energy density function (scalar)
~F, ~T applied forces (F ) and torques (T )
mr mass of rigid body r
mIe mass per unit domain of elastic body e
~~Ibor inertia dyad of rigid body (r)
~~IIoe inertia dyad per unit domain of elastic body (e)
~Li linear momentum of rigid (i= r) or elastic (i= e) body
~Hi angular momentum of rigid (i= r) or elastic (i= e) body
~Fi resultant active impulse of force on rigid (i= r) or elastic

(i= e) body
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~T i non-constraint impulsive moments including impulses of
couples about point Spi (i= r or e for rigid or elastic bodies,
respectively)

Spi special point associated with each rigid (i= r) or elastic
(i= e) body in the system of bodies
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